
Journal of Statistical Physics, Vol. 93, Nos. 3/4, 1998

Chaos, Complexity, and Computers:
Object-Oriented Programming and
Physics Concepts for Undergraduates

Received December I, 1997; final January 5, 1998

This article discusses the issues that have arisen as we have updated a course for
undergraduates on computers and physics developed at the University of Chicago
by Leo Kadanoff, Michael Vinson, Amy Kolan, and Marcelo Magnasco. This
course uses interactive computation to teach concepts in nonlinear dynamics, and,
more generally, scientific hypothesis testing. Changing the computer language
used from THINK Pascal to the object-oriented programming language Java has
led not only to "cosmetic" changes (an increased emphasis on animations), but
also to conceptual changes in the course (expansion of the discussion of the
concept of universality).

KEY WORDS: Chaos; complexity; computers.

1. INTRODUCTION

It is a great privilege to have the opportunity to contribute to this issue
honoring Leo Kadanoff's sixtieth birthday. Although my scientific research
has been influenced greatly by Leo's work, I have chosen to focus here on
another topic of great concern to Leo, teaching physics. This article discusses
the issues that have arisen over the past year as a group of us have revised
and updated an undergraduate course that Leo and his collaborators
developed between 1988 and 1991. Incidentally, one important motivating
factor for choosing Java as the computer language for the new version of
the course is another issue of great concern to Leo—the improvement of
employment opportunities for physics Ph.D.'s.

1 James Franck Institute, University of Chicago, Chicago, Illinois 60637; snc@control.
uchicago.edu.

S. N. Coppersmith1

1009

0022-4715/98/1100-1009$15.00/0 © 1998 Plenum Publishing Corporation

In this paper I will first discuss the overall goals and strategy of the
course that Leo and his collaborators developed, which are also those of
the present version. I will then discuss how changes and improvements in
computational capabilities made substantial revisions necessary, and how the
decision to use an object-oriented programming language had unexpected
consequences for the choice of physics subject matter, in particular, increased
emphasis on the concepts of universality and renormalization.

2. GOALS OF THE COURSE

The course developed by Leo Kadanoff and his collaborators(2, 3) aims
to teach juniors and seniors in the physical sciences: (1) how chaotic
behavior arises in simple deterministic dynamical systems, and (2) how to
use computers, and in particular graphical methods, for hypothesis testing.
For example, students were taught how to formulate and answer effectively
questions like: Given a particle trapped in a central force potential that goes
like l/r4, is a typical orbit closed?,2 and What can we say about the
frequency dependence of the response of a forced pendulum!3 No previous
programming experience was assumed, and yet students were able to
develop the skills they needed to answer these questions. Thus the course
enabled students to develop broadly applicable quantitative skills, and they
were then able to attack effectively problems in fields far removed from the
scientific subjects covered in the course syllabus.

The choice to use THINK Pascal and to teach programming as well
as physics (rather than a package such as Matlab or Mathematica)
followed naturally from the goal of helping students to develop skills that
are most broadly applicable. Pascal is a computer language designed for
pedagogical purposes, and THINK Pascal has sophisticated and easy-to-
use debugging capabilities. These advantages enabled the students to learn
to program as painlessly as possible.

Although several excellent courses exist that cover concepts in non-
linear dynamics,(4) the course that Leo and his collaborators developed
integrated in a unique fashion concepts of both computation and nonlinear
dynamics.

3. GOALS OF THE REVISIONS

Although various versions of the course taught during the period
1989-1993 were extremely successful, by 1997 it was clear that the course

2 No.
3 It is very complex and quite likely to be chaotic.

1010 Coppersmith

materials needed to be updated. The most pressing issue was the computer
language. Updating the language led to unanticipated revisions of physics
content in the course.

3.1. Computer Programming Language(5)

Several factors contributed to the decision to change the computer
language, the most immediate being that THINK Pascal was no longer
being supported in the computer facility to be used for the course
laboratory. We again decided not to use a mathematics package but rather
to teach the students a programming language. An effective graphics
capability was clearly necessary. Our choice needed to be compatible with
the available university resources, which had changed considerably since
1991 and continue to evolve rapidly. Although the majority of computers
owned by the University are made by Apple (including those to be used by
the students in the course laboratory), new university purchases are now
overwhelmingly PC's and workstations, and most students own PC's.
Therefore, we wanted to revise the course so that it be compatible with but
not dependent on Apple hardware. We also wanted to make the course as
attractive as possible to students, and wanted to exploit of the popularity
of the world wide web.

3.1.1. Advantages of Java. Our two biggest reasons for choosing
Java as the computer language are (1) its relative platform-independence,
and (2) its sophisticated threading capabilities that are very useful for
animations. The platform-independence is not perfect,(6) but the programs
used in the course are fairly simple, and in our experience have tended to
run on many different platforms with few if any modifications.(7) The
threading capabilities are a major advantage, and we have found it
straightforward to write simple, good-looking animations of nonlinear
systems (for an example, see http://arnold.uchicago.edu/~snc/Physics-251/
DWAnimation.html). Animations are considerably simpler to write in Java
than in C++.

Our third reason to use Java is that knowing an object-oriented
programming language such as C + + or Java is a significantly more
marketable skill than knowing Fortran, Basic, or Pascal. This fact is rele-
vant not only for the undergraduates taking the course, but also for our
graduate teaching assistants. Evidence that the graduate students find
learning Java attractive is that five of them (three of whom have available
other means of support, either fellowship or RA) contacted me six months
in advance to volunteer for the course's two teaching assistant positions.

Chaos, Complexity, and Computers 1011

The absolutely clearcut advantage of increased employability for
students who know an object-oriented programming language can be dis-
tinguished from the question of the relative merits of object-oriented
programming for scientific computation. There are two ways to do the
calculations that scientists need to do, one of which is substantially more
marketable than the other. If the more marketable method is not substan-
tially worse for our calculations, we do not need to be convinced that it is
better in order to encourage our students to learn it. The employment
factor aside, my views of the relative advantages and disadvantages of
object-oriented and procedural programming are outlined below.

3.1.2. Disadvantages of Java. Although on the whole our
experience with Java has been positive, there are substantial disadvantages
to its use.

Speed: The most obvious disadvantage of Java is that it is significantly
slower than most computer languages because it is interpreted when it is
executed.(8) Just-in-time compilers (such as in the Apple AppletRunner,
Internet Explorer 4 or higher, and Netscape 4 or higher) speed up execution
substantially, but even with this improvement, execution is substantially
slower for Java programs than for programs written in other computer
languages such as C or Pascal. We were quite concerned about this, but we
found that improvements in computer hardware since the original
programs for the course were written more than compensated for this
slowdown, so execution speed was never a major factor for us. Animations,
which in the old version looked marginal even when written using
sophisticated, platform-dependent, bit-mapping and masking techniques,
now were straightforward to program successfully.(9) In short, we found the
speed limitations of Java were not a serious limitation for this course.

Textbook: A serious drawback to using Java is that it is new enough
that there are as yet very few textbooks about it, and those that do exist
often do not emphasize the language features that are needed for a non-
linear dynamics course. We decided to require two Java books, one at a
beginning level, and a second, more advanced text for explaining animation
techniques. Neither book is a textbook, so we needed to include a signifi-
cant number of programming exercises and problems in the course
laboratory manual. New textbooks are being published at a rapid rate, so
hopefully this situation will improve quickly.

Language Stability: The newness of Java gives rise to other disadvan-
tages in using it. One is that new versions of the language are coming out
fairly rapidly. Another is that one is more likely to run into bugs. We have
found that platform-dependence difficulties arise largely because of the
platform-dependent nature of the bugs. Java for the Macintosh is in an

1012 Coppersmith

earlier version than for PC's and workstations (1.0.2 versus 1.1.4), so it is
even more likely to have bugs. We expect these problems to ameliorate as
Java matures.

Getting started has complications: For us, the most serious disadvan-
tage of Java turned out to be that it is relatively quite complicated to write
even the simplest programs. To create any Java applet, one must write a
Java program following a strict naming convention, compile the program
into a class file, write an HTML file which calls the applet, and then finally
run the applet from a web browser, an appletviewer, or an integrated
development environment. Directions on how to write a simple applet that
displays the message Hello world! can be found at(10) http://java.sun.com/
docs/books/tutorial/getStarted/applet/index.html. The program itself con-
tains the lines:

import java.applet.Applet;
import java.awt.Graphics;
public class Hello World extends Applet {

public void paint(Graphics g) {
g.drawString("HeIlo world!," 50, 25);

}

For readers who know no Java, it is probably obvious that this program
is not completely trivial. For those who do know Java, note that this program
imports the two class libraries java.applet.Applet and java.awt.Graphics,
uses inheritance in the declaration of the applet Hello World, and uses a
Graphics object in the paint method. Writing a very basic Java application
(for instructions, see http://java.sun.com/docs/books/tutorial/getStarted/
application/index.html) is slightly simpler, but then one must open a frame
in order to do simple graphics. We have opted to provide the students with
working applets at the beginning of the course, and then gradually explain
the underlying concepts, with the hope that they can get started quickly and
fill in the gaps in their understanding of the programming language later.

Writing simple programs in Java can be more confusing than in proce-
dural languages until one gets the hang of objects. We discuss this, as well
as other advantages and disadvantages of object-oriented programming, in
the next section.

4. OBJECT-ORIENTED PROGRAMMING AND
PHYSICS CONCEPTS

Books about object-oriented programming tend to have a lot of dis-
cussion of software reusability and modifiability, data hiding, inheritance,

Chaos, Complexity, and Computers 1013

and polymorphism.(11) These discussions can be quite opaque to the
uninitiated, and yet the concepts in question are quite similar to those that
physicists use frequently.

The point of defining objects is to keep the description of a problem
as abstract as possible for as long as possible. This concept is completely
analogous to things that physicists do all the time. For example, freshman
physics students are instructed to do problems in terms of variables and
only plug in numbers at the end. For instance, consider the following sim-
ple physics problem: A projectile is launched from a flat surface at a 45°
angle to the horizontal and is observed to reach its maximum height at a time
three seconds after launching. How far from the launch point is the projectile
when it has fallen halfway from its maximum height? We teach the students
to call the angle 6 and not 45°, keeping the problem as general as possible
until the very end. We motivate this by telling them that they will save a
lot of work if they have to redo the problem with a different initial angle.
The analogous procedure in object-oriented programming is to define an
object (say, a launcher object) which has a method (say, getInitialAngle())
which one calls to determine the initial angle. If the process by which the
initial angle is determined changes, then only the launcher object need be
modified; the rest of the program is completely unaffected.

A second illustration of the role of abstraction is particularly relevant
to a course in dynamical systems. Recall that a dynamical system is a rule
that determines the configuration at a later time given the configuration at
some earlier time. Newton's laws work this way: given the velocity and
position of a particle at one instant of time, these laws enable the predic-
tion of the velocity and position at future times. However, one can imagine
many different types of rules, encompassing different numbers of variables,
including continuous differential equations as well as discrete-time maps.
It is clear that systems described by continuous differential equations com-
prise a subset of dynamical systems, and that systems which are single
particles obeying Newton's laws comprise a subset, and, in turn, the
damped pendulum is a yet smaller subset. Object-oriented programming is
particularly useful in this situation, for one can define the general class
dynamicalSystem and then use inheritance to define subclasses correspond-
ing to the more specialized cases (e.g., diffEqSystem, damped Pendulum).
Therefore, when programming in Java it is natural and useful to consider
the whole ensemble of dynamical systems together. In physics, considering
the whole ensemble of dynamical systems is important because of univer-
sality, where large classes of different dynamical systems have some proper-
ties that are quantitatively identical. The similarity and importance of these
concepts led us to expand greatly the emphasis on universality in the
course, focusing on the universal properties of the period-doubling route to

1014 Coppersmith

chaos.(12) Java's object-oriented nature makes it easy and natural for
students to examine many different dynamical systems, and thus observe
empirically that they all obey scaling laws with the same exponents.

4.1. Teaching Object-Oriented Programming

In our course the programming is used as a means to an end in the
sense that the highest priority is to write working programs that students
can use to understand dynamical systems rather than to teach excellent
object-oriented programming technique. However, to write even fairly
simple Java programs one must have some understanding of how objects
work. This necessity is pressing, in contrast to the situation with C++,
because C++ is a superset of the procedural language C. This aspect of
Java means that those already proficient in a procedural programming
language go through a frustrating period (which for the author lasted
about a month) when programs that were straightforward to write in the
"old" language now seem difficult.(14) The advantage of this feature is that
one more quickly understands the differences between procedural and
object-oriented programming.

4.2. Object-Oriented Programming and Scientific
Computation

The section discusses a few aspects of the usefulness of object-oriented
programming languages for scientific computation.

Despite Java's advantages compared to C++ for use in an under-
graduate nonlinear dynamics course (simpler graphics and animations, plus
the language itself is less confusing), currently Java is not a good option for
scientific computation(5) Disadvantages include: (1) execution is slower, a
factor which is discussed above, (2) input and output facilities tend to be
more rudimentary in Java than in other computer languages,(13) and (3)
the mathematical libraries available for Java are much less extensive than
those available for Fortran and C (and thus also C++). Therefore,
currently the most practical object-oriented programming language for
scientific programming is C++.

Anecdotal evidence seems to indicate that C++ programs run some-
what (roughly 20%) slower than Fortran programs. The author has never
done a computation where such a difference in speed was important, and
therefore does not consider this factor significant. In addition, at least one
expert claims that this factor arises only because the flexibility of C and
C++ makes optimization of a program more complex, and that a fully

Chaos, Complexity, and Computers 1015

optimized C or C++ program typically runs as fast or faster than the same
program written in Fortran.(15) Memory management in C and C++ tends
to be much more efficient than in Fortran, and often memory rather than
time is the limiting factor in a calculation.(15) During the "learning curve,"
the time needed to write simple programs is longer with an object-oriented
language, but reasonably bright individuals get over this quickly. There-
fore, there is no compelling reason to avoid object-oriented programming.

For simple computations the advantages of object-oriented program-
ming are minimal (just as the advantages of using 6 instead of 45° in the
projectile problem described above are not so great), but for massive com-
puter programs that will undergo revisions by many people over a long
period, the author believes that object-oriented programming encourages
useful abstractions that lead to significant advantages. This usefulness for
large computations, together with the employability factor, are significant
reasons for encouraging the use of object-oriented programming in the
physical sciences.

5. DISCUSSION

This article has discussed issues that have arisen as we have updated
a course on computers and physics developed by Leo Kadanoff and his
collaborators. A major focus is the consequences of the decision to change
the computer programming language to Java. This decision led not only to
increased use of animations in the course for basically cosmetic reasons,
but also the increased emphasis on the concept of universality in dynamical
systems in the subject matter. This latter change was motivated by the
importance of abstraction, classification, and hierarchy in object-oriented
programming languages, and the analogy to important physics concepts.

Unfortunately, the deadline for submission of this article came before
the course was taught, so the article could not include any information
about the reaction of the students taking the course. Those interested in
developments occurring after this writing are invited to contact the author
(snc@control.uchicago.edu).(16)

ACKNOWLEDGMENTS

I thank the authors of ref. 3 for allowing me, along with the other
authors of ref. 1, free access to the material that they prepared and for the
benefit of their insight. I acknowledge a very useful conversation with Steve
White, and hospitality and support from the Institute for Theoretical

1016 Coppersmith

1. Benjamin Blander, Susan Coppersmith, Leo P. Kadanoff, Michael J. Vinson, Amy J.
Kolan, Marcelo Magnasco, and Scott Wunsch, Chaos, Complexity, and Computers,
unpublished class notes (1998).

2. Leo P. Kadanoff, Interactive computation for undergraduates, Physics Today, December
1988, page 9.

3. Leo P. Kadanoff, Michael J. Vinson, Amy J. Kolan, and Marcelo Magnasco, Chaos,
Computers, and Physics, unpublished class notes (1991).

4. Other texts integrating programming and physics include Nicholas J. Giordano, Computa-
tional Physics (Prentice-Hall, Englewood Cliffs, NJ, 1997); Harvey Gould and Jan
Tobochnik, An Introduction to Computer Simulation Methods, 2nd ed. (Addison Wesley,
Reading, MA, 1996); G. L. Baker and J. P. Gollub, Chaotic Dynamics: An Introduction,
2nd ed. (Cambridge University Press, 1996). An extensive and very useful list of resources
available for teaching courses in nonlinear dynamics is Robert C. Hilborn and Nicholas
B. Tufillaro, Am. J. Phys. 65:822 (1997). In addition, Mike Cross has some interesting and
sophisticated Java applets illustrating concepts of nonlinear dynamics on his web page at
http://www.cmp.caltech.edu/ ~mcc/chaos_new/Chaos_demos.html.

5. For a useful discussion of the advantages and disadvantages of Java for scientific applica-
tions, see Paul Dubois, Is Java for Scientific Programming, Comput. Phys. 11(6):611
(1997).

6. For instance, see Mike Cross' comments at: http://www.cmp.caltech.edu/~mcc/chaos_new/
experience.html. We have addressed the issue of putting technical text on the web by using
Adobe Acrobat, and the 1.1 version of Java is supposed to address the component layout
issues raised by Cross. However, as of this writing (November 1997), Java 1.1 was not yet
available for Macintosh computers.

7. One problem of this type is that the resize() command does not work at all when running
applets using Netscape 3.0. One can work around this problem by setting the applet size
in the html file.

8. Java programs are compiled into bytecodes, which in turn are executed by a Java run-
time interpreter. For a fuller discussion of this point, see Patrick Niemeyer & Joshua
Peck, Exploring Java (O'Reilly, Sebastopol, CA, 1996), p. 4.

9. The most important improvement leading to more attractive animations is increased com-
puter memory sizes, which allow for double-buffering (see, e.g., http://java.sun.com/docs/
books/tutorial/ui/drawing/doubleBuffer.html).

10. Our course uses the integrated development environment (IDE) Codewarrior, largely
because it is used in many of the other classes taught in the Computer Science department
here. Using an IDE makes getting started somewhat simpler, but comes far from elimi-
nating all the problems.

11. See, e.g., Grady Booch, Object-oriented Analysis and Design with Applications, 2nd ed.
(Benjamin-Cummings, Redwood City, CA, 1994).

12. M. J. Feigenbaum, The universal metric properties of nonlinear transformations, J. Stat.
Phys. 21:669-706 (1979).

13. The inconvenient input and output facilities in Java can be overcome by writing class
libraries. Some useful utilities of this type can be found in Gary Cornell and Cary
Horstmann, Core Java (Prentice-Hall, Upper Saddle River, NJ, 1996).

Chaos, Complexity, and Computers 1017

Physics at Santa Barbara (NSF Grant Now PHY94-07194), where this
article was prepared in part.

REFERENCES

14. For example, in Java a method can only return zero or one objects, in contrast to a
Fortran subroutine where large numbers of both inputs and outputs can be handled
simultaneously. In Java one must bundle the outputs into an object in order to have them
all returned by a single method.

15. S. R. White, private communication.
16. Readers interested in examining the course lab manual can look at: http://arnold

uchicago.edu/~snc/Physics_251/Lab_ Manual.

1018 Coppersmith

